Abstract
Electromagnetic rail launch technology has attracted increasing attention owing to its advantages in terms of range, firepower, and speed. However, due to electricity-magnetism-heat-force coupling, the surface of the armature-rail friction pair becomes severely damaged, which restricts the development of this technology. A series of studies have been conducted to reduce the damage of the armature-rail friction pair, including an analysis of the damage mechanism and protection strategies. In this study, various types of surface damage were classified into mechanical, electrical, and coupling damages according to their causes. This damage is caused by factors such as mechanical friction, mechanical impact, and electric erosion, either individually or in combination. Then, a detailed investigation of protection strategies for reducing damage is introduced, including material improvement through the use of novel combined deformation and heat treatment processes to achieve high strength and high conductivity, as well as surface treatment technologies such as structural coatings for wear resistance and functional coatings for ablation and melting resistance. Finally, future development prospects of armature-rail friction pair materials are discussed. This study provides a theoretical basis and directions for the development of high-performance materials for the armature-rail friction pair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.