Abstract
The nuclear reactor pressure vessel is an important component of a nuclear power plant. It has been used in harsh environments such as high temperature, high pressure, neutron irradiation, thermal aging, corrosion and fatigue for a long time, which puts forward higher standards for the performance requirements for nuclear pressure vessel steel. Based on the characteristics of large size and wall thickness of the nuclear pressure vessel, combined with its performance requirements, this work studies the problems of forging technology, mechanical properties, irradiation damage, corrosion failure, thermal aging behavior and fatigue properties, and summarizes the research progress of nuclear pressure vessel materials. The influencing factors of microstructures evolution and mechanism of mechanical properties change of nuclear pressure vessel steel are analyzed in this work. The mechanical properties before and after irradiation are compared, and the influence mechanisms of irradiation hardening and embrittlement are also summarized. Although the stainless steel will be surfacing on the inner wall of nuclear pressure vessel to prevent corrosion, long-term operation may cause aging or deterioration of stainless steel, resulting in corrosion caused by the contact between the primary circuit water environment and the nuclear pressure vessel steel. Therefore, the corrosion behavior of nuclear pressure vessels materials is also summarized in detail. Meanwhile, the evolution mechanism of the microstructure of nuclear pressure vessel materials under thermal aging conditions is analyzed, and the mechanisms affecting the mechanical properties are also described. In addition, the influence mechanisms of internal and external factors on the fatigue properties, fatigue crack initiation and fatigue crack propagation of nuclear pressure vessel steel are analyzed in detail from different perspectives. Finally, the development direction and further research contents of nuclear pressure vessel materials are prospected in order to improve the service life and ensure safe service in harsh environment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have