Abstract

Silicosis is a common occupational disease, and its main characteristic pathological features are the formation of silicon nodules and diffuse pulmonary fibrosis. In the process of silicosis fibrosis, macrophages can be polarized into M1 macrophages and M2 macrophages. M1 macrophages play a pro-inflammatory role in the early stage of silicosis and release a variety of inflammatory factors, which is the core of inflammatory response. M2 macrophages promote inflammation resolution and tissue repair in silicosis fibrosis stage by secreting anti-inflammatory cytokines and pro-fibrotic mediators. M1/M2 polarization balance plays an important role in the occurrence and development of silicosis, and the regulation of macrophage polarization direction may play a positive role in the prevention and treatment of silicosis fibrosis. In this review, the role of macrophage polarization in silicosis fibrosis, the related signaling pathways regulating macrophage polarization in silicosis fibrosis, and the potential therapeutic targets based on macrophage polarization in silicosis fibrosis are reviewed, with a view to further strengthening the understanding of the mechanism of macrophage polarization in the pathogenesis and treatment of silicosis fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call