Abstract

Spinal cord injury (SCI) is a severe disabling disease, which mainly manifests as impairments of sensory and motor functions, sexual function, bladder and intestinal functions, respiratory and cardiac functions below the injury plane. In addition, the condition has a profound effect on the mental health of patients, which often results in severe sequelae. Some patients may be paraplegic for life or even die, which places a huge burden on the family and society. There is still no effective treatment for SCI. Studies have confirmed that endogenous neural stem cells (ENSCs), as multipotent neural stem cells, which are located in the ependymal region of the central canal of the adult mammalian spinal cord, are activated after SCI and then differentiate into various nerve cells to promote endogenous repair and regeneration. However, the central canal of the spinal cord is often occluded to varying degrees in adults, and residual ependymal cells cannot be activated and do not proliferate after SCI. Besides, the destruction of the microenvironment after SCI is also an important factor that affects the proliferation and differentiation of ENSCs and spinal cord repair. Therefore, this review describes the role of ENSCs in SCI, in terms of the origin, transformation, treatment, and influencing factors, to provide new ideas for clinical treatment of SCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.