Abstract

As the most common active brain-computer interaction paradigm, motor imagery brain-computer interface (MI-BCI) suffers from the bottleneck problems of small instruction set and low accuracy, and its information transmission rate (ITR) and practical application are severely limited. In this study, we designed 6-class imagination actions, collected electroencephalogram (EEG) signals from 19 subjects, and studied the effect of collaborative brain-computer interface (cBCI) collaboration strategy on MI-BCI classification performance, the effects of changes in different group sizes and fusion strategies on group multi-classification performance are compared. The results showed that the most suitable group size was 4 people, and the best fusion strategy was decision fusion. In this condition, the classification accuracy of the group reached 77%, which was higher than that of the feature fusion strategy under the same group size (77.31% vs. 56.34%), and was significantly higher than that of the average single user (77.31% vs. 44.90%). The research in this paper proves that the cBCI collaboration strategy can effectively improve the MI-BCI classification performance, which lays the foundation for MI-cBCI research and its future application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.