Abstract

Wind power plays a pivotal role in China's endeavor to achieve its ambitious emissions reduction targets. However, the current research on wind energy potential lacks standardization, making it arduous to compare wind potential across different regions and match energy supply and demand accurately. To address this issue, this study developed a geographically-constrained multi-criteria decision analysis (GIS-MCDA) model to estimate China's wind energy potential at a resolution of 1 km2. The GIS-MCDA model is reconstructed from a geospatial perspective using 11 finely-grained metric indicators, significantly improving the accuracy of estimates. Moreover, this study proposes a research paradigm for wind energy potential that can serve as a reference for other countries and regions. The results demonstrate that China possesses a wind energy development potential of 4.6 TW at a height of 100 m, including 4.1 TW of onshore wind power potential and 0.5 TW of offshore potential. The abundant resources can assist China in achieving its zero-carbon emissions goal. However, the abundant wind energy resources in the "Three North" region of China do not match the current electricity demand. Conversely, the southeast coastal region presents significant potential for offshore wind power, heralding a new opportunity for wind power development. By depicting the deployment potential of wind power, this study provides more precise estimates, establishes a research paradigm for wind energy potential, enhances researchers' comprehension of wind energy development, and provides a replicable, scalable, and quantifiable wind energy potential measurement platform for effective planning of renewable energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call