Abstract
Wind power generation is random and easily affected by external factors. In order to construct an effective prediction model based on wind power generation, a wind power prediction model based on principal component analysis (PCA) noise reduction, feature selection based on random forest model and support vector regression (SVR) algorithm is proposed. First, in the data preprocessing stage, PCA is used for sample data denoising; then the random forest model is used to calculate the importance evaluation value of each feature to optimize the selection of feature parameters; finally, The SVR algorithm is applied for training and prediction. Experiments show that the prediction effect of the model based on random forest and SVR is excellent, the root mean square error(RMSE) is 0.086, the average absolute percentage error(MAPE) is 23.47%, and the coefficient of determination(R2) is 0.991. Compared with the traditional SVR model, the root mean square error of the method proposed in this paper is reduced by 95.9%, and the prediction accuracy and the fit of the prediction curve are significantly improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.