Abstract

The paper presents some aspects of theoretical-experimental researches on the possibility of obtaining filters from a cellular metallic composite, based on theoretical considerations and practical aspects of the fluid environment, filter elements and the specific equipment that can accommodate this kind of filter. Thus, development of such new and performant filtering technologies, based on multifunctional materials, is currently conditioned by the design and development of cellular structures, with properties adapted to the filtering and functioning demands, structures that can reach operating temperatures between 150 and 2000oC. It was examined the possibility of obtaining alloys with cellular structure directly from casting process, alloys with high porosity, adjustable size and distribution of pores and high thermo-mechanical properties, which can be adapted for applications in the field of fluids filtration at temperatures above 100°C, fluids which can be chemically corrosive. The AlMg10-15% SiC cellular composite was obtained by means of melt bubbling method. We chose this type of material due to its achieved overall morphology: pores are uniform distributed throughout the mass of the material and they are connected through communication channels in the entire volume of the metallic composite. Through the conducted filtration tests we obtain the following values: filter fineness 97 μm, filtering capacity β97 = 8 and filtration efficiency E97 = 87.5 %. In accordance with determined filtering characteristics, the cellular metallic composite AlMg10-15% SiC belongs to the filters materials class that ensure a purity of the filtered fluid corresponding to a purity grade 6, in accordance with NAS 1638 and ISO 4406-1999.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.