Abstract

The non-uniformity of pore size and pore distribution of the current hemodialysis membrane results in low efficiency of uremic solute removal as well as the loss of albumin. By using nano technology, an anodic alumina membrane (ceramic membrane) with self-organized nano-pore structure was produced. The objective of this study was to investigate the correlation between various anodization conditions and the pore characteristics of the ceramic membrane as a potential use in artificial kidney / hemodialysis. An aluminum thin film was oxidized in two electrolytes consisting of 3% and 5% sulfuric acid and 2.7% oxalic acid. The applied voltages were 12.5, 15, 17.5 and 20 (V) for sulfuric acid and 20, 30, 40 and 50 (V) for oxalic acid. Pore size and porosity were determined by analyzing scanning electron microscopy (SEM) images and hydraulic conductivity was measured. Pore size increased linearly with voltage. Acid concentration affected pore formation but not pore size and pore distribution. Hydraulic conductivity of the ceramic membrane was higher than that of polymer dialysis membrane. The optimal formation conditions for self-organized nano-pore structure of ceramic membrane were 12.5–17.5V in 3–5% sulfuric acid at 0 °C. These conditions produced ceramic membranes with pores of ~ 10 nm diameter. Conclusion: Anodic alumina technology reliably produced in quantity structures with pore sizes in the 10–50 nm diameter range. Because of more uniform pore size, high porosity, high hydraulic conductivity and resistance to high temperature, the ceramic membrane has potential for future application as a hemodialysis membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call