Abstract

The cyclone separator has attracted increasing attention due to its small size, rapid construction and high separation efficiency. This study investigated its gas-liquid two-phase flow and separation characteristics experimentally and numerically. A numerical model of two- phase flow in the cyclone separator was proposed using the Euler-Lagrange method. The distribution of pressure, tangential and axial velocity in the gas-phase flow field was obtained, and the oil droplet movement was traced. Separation efficiency was also studied experimentally, and the diameter distributions of oil droplets at the inlet and the outlet of the separator were measured by a Malvern laser particle size analyser to verify the simulation model. Based on high-speed photography technology, the oil film distribution and flow pattern on the wall of the cyclone separator were visualised. The variation of oil-gas two-phase flow in the cyclone separator was compared under various inlet flow rates. Based on the results, an improved structure was proposed, and the performance of the improved separator was investigated experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call