Abstract

Bolted connections are widely used in assembly structures, and their dynamic characteristics are often affected by stiffness, damping, excitation, and other factors. In order to solve the problems of low computational efficiency of fine modeling and large computational error of linearized equivalent modeling of bolted structures, this paper proposes a dynamic characteristic parameter identification method for bolted structures based on the multiscale method and considering the influence of nonlinear factors. In this method, the bolted connection characteristics are simulated in the form of a combination of shear stiffness, torsional stiffness, nonlinear stiffness, and viscous damping coefficient and identified according to the test measurement frequency and frequency response function. At the same time, by establishing the nonlinear dynamic model of bolted structure, the influence of different bolt preloads and excitation forces on the dynamic characteristics of bolted structure is studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call