Abstract

The clearance of the revolute joint influences the accuracy of dynamic parameter identification. In order to address this problem, a method for dynamic parameter identification of an X–Y pointing mechanism while considering the clearance of the revolute joint is proposed in this paper. Firstly, the nonlinear dynamic model of the pointing mechanism was established based on a modified contact model, which took the effect of the asperity of contact surface on joint clearance into consideration. Secondly, with the aim of achieving the anti-interference incentive trajectory, the trajectory was optimized according to the condition number of the observation matrix and the driving functions of activate joints that could be obtained. Thirdly, dynamic simulation was conducted through Adams software, and clearance was involved in the simulation model. Finally, the dynamic parameter identification of the pointing mechanism was conducted based on an artificial bee colony (ABC) algorithm. The identification result that considered joint clearance was compared with that which did not consider joint clearance. The results showed that the accuracy of the dynamic parameter identification was improved when the clearance was taken into consideration. This study provides a theoretical basis for the improvement of dynamic parameter identification accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.