Abstract

Infill wall-frame interaction-induced damage and failure have been found in many previous earthquakes due to the inappropriate estimation of the stiffness of infill walls. It is a common knowledge of design philosophy that properly lowering the lateral stiffness of infill wall may significantly improve the seismic performances of concrete frames. Fabricated straw wall, a sandwich-type structure with tenon and groove, is proposed as a new type of lightweight and environment-friendly infill wall. The lateral stiffness is much lower than that of masonry infill wall. Shaking table tests were carried out for a concrete frame structure with fabricated straw wall, as well as for a frame with masonry infill wall for comparison. Results show that failure modes of them are different. Plastic hinges took place at the ends of beams in the frame with fabricated straw infill wall, different from the frame with masonry infill wall where the plastic hinges emerged at the ends of columns. Numerical analysis was conducted to verify and illustrate the failure mechanism. It indicates that the straw panel-infilled concrete frame well matches the design philosophy and presents better seismic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.