Abstract

Abstract Supersaturation of dissolved oxygen (DO) and total dissolved gas (TDG) is generated by high dam discharge, excess oxygen production in photosynthesis and increasing temperature in water, which may directly lead to fish suffering from ‘gas bubble disease’ or death. In this paper, under a series of experimental aeration conditions in standing water, it was concluded that aeration had a positively promoting effect on releases of supersaturated DO and TDG, while aeration aperture and aeration depth had inhibitory effects on them. For single factor analysis, aeration had the greatest effect on the release of DO and TDG, the second effect on DO was that of aeration depth and the smallest effect was that of aeration aperture, but the second effect on TDG was that of aeration aperture and the smallest effect was that of aeration depth. Most importantly, the release coefficient of DO was greater than that of TDG, and a quantitative relationship between the release coefficient of DO and TDG and aeration conditions, respectively, was established. An exponential function relationship of the release coefficients of DO and TDG was also established. The results of the research have important guiding significance and theoretical value for reducing the harm caused by supersaturated DO and TDG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call