Abstract

Experiment and numerical simulation were conducted to investigate the penetration performance of shaped charge jet into block stone concrete targets. The experiment has shown that the jet undergoes deflection and other phenomena during its penetration of block stone concrete. Improvements have been made to the methods used by previous scholars for constructing aggregate particles, resulting in a particle model that more closely resembles the true shape of the aggregate. A novel method for judging the intersection of aggregate particles based on the Plucker coordinate system was proposed. In comparison with traditional methods, this method is not constrained by the shape of aggregate particles. By utilizing dynamic simulation software to replicate aggregate settlement during the production process of concrete targets, a 3D meso-scale model of concrete was successfully established. Numerical simulations were conducted according to the experimental settings, with the results demonstrating good consistency between the experimental and numerical simulations, thus confirming the reliability of the model and methodology presented in this article. Additionally, the numerical simulation results suggest that the aggregate content significantly influences the degree of interference, penetration depth, and damage zone range of the jet, while the impact position primarily affects the deflection of the jet. This article provides a numerical simulation method for future research on the penetration and damage mechanism of shaped charge jet considering the 3D meso-scale model of concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.