Abstract

Robotic bonnet polishing (RBP) technology is widely used in the polishing process of optical components, but industrial robots have the characteristics of a wide processing range and low body stiffness. Therefore, in the actual polishing process, there are different polishing forces due to different stiffnesses, which leads to different tool influence functions (TIF) affecting the surface quality of optical components. To achieve a uniform surface quality of the components polished by the RBP, we modeled the stiffness of the robot and modified the TIF in conjunction with the Preston equation, finally verifying the accuracy of the modified model through experiments. The results of the fixed-point polishing experiments show that the maximum relative error before the TIF correction is 12.5% and the maximum relative error after the correction is 2.8% within the robot's 600mm*600mm machining range. The results of the plane polishing experiments show that the maximum relative error before the TIF correction is 13% and the maximum relative error after the correction is 1.7%. Therefore, a method for TIF corrections from RBP based on stiffness modeling has important engineering implications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.