Abstract

Because the carbon load inside a diesel particulate filters (DPF) affects the DPF regeneration, and the carbon load recognition is significant for the particulate matter (PM) emission control. It is necessary to investigate an on-board DPF carbon load recognition method because the carbon load cannot be directly measured by sensors. Aiming to build a DPF carbon load prediction model adopting the deep learning method, this paper proposes a DPF carbon load identification model based on different experimental parameters using a layered one dimension convolutional neural network (1D-CNN) method. To improve data validity, this paper adopts two data-processing methods. The data pre-processing adopts data splicing method to complete the construction of the original sample set, and the data after-processing uses wavelet packet transform method to establish the feature sample sets. The model adopts the optimal feature dataset constructed by three input parameters, i.e., temperature difference, pressure difference, and exhaust mass flow, and has both high training accuracy and test accuracy above 90 %. The pressure difference is the most important influencing input parameter, and the three-parameter sample set (ΔT + ΔP + Q) has great recognition accuracy and good model stability with the high training accuracy and test accuracy as well as less iteration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.