Abstract

Atmospheric pressure plasma technology has been presented as an effective tool in relieving or removing subsurface damage induced by previous mechanical machining process. However, the surface morphology evolution and mechanism during removing the subsurface damage using atmospheric pressure plasma processing after grinding to remove the subdamage is rarely reported. In this research, this procedure is studied based on experiments and measurement. Even if some unique properties of atmospheric pressure plasma processing are observed, such as particle exposure. From the mechanical machining to atmospheric plasma blasting, the R PV value increase from 1.338 μm to 1.361 μm due to some singular deep cracks that are not fully healed or filled by the abrasives. Corresponding peak-tovalley and RMS roughness evolution is investigated as well. It is revealed that the atmospheric pressure plasma process may end up with a planar surface depending on the damage removing. Density of the damage has more significant effect on the roughness evolution than damage depth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call