Abstract

It has been shown that Kudzu root has significant pharmacological effects such as improving microcirculation, dilating coronary arteries, and increasing cerebral and coronary blood flow, but its material basis and mechanism of action are not clear. The aim of this study was to investigate the mechanism of action of Kudzu root in the prevention and treatment of cerebral ischemia (CI) through network pharmacology combined with animal experiments. The components of kudzu root were screened by using the Chemistry Database, Chinese Academy of Science. Linpinski's five rules were used to perform pharmacophore-like analysis to obtain the active ingredients of Kudzu root. The Swiss Target Prediction Service database was used to predict the potential protein targets of kudzu root components associated with CI. An active ingredient-target network was constructed by using Cytoscape 3.6.0. A rat model of middle cerebral artery occlusion (MCAO) was established, then the main targets and signaling pathways predicted were verified by observing the area of cerebral infarction and Western blot experiments. In total, 84 major active compounds and 34 targets included gerberoside, belonging to the isoflavone class, gallic acid, amino acid class, 4-Methylphenol, phenolic class, and quercetin, and flavonoid class (Flavonoids). The targets covered were proteins related to excitatory amino acids and calcium overload, including Excitatory amino acid transporter 2 (SLC1A2), Glutamate receptor ionotropic, kainate 1 (GRIK1), Glutamate receptor ionotropic, NMDA 1 (GRIN1), Glutamate receptor 2(GRIA2), Calcium/calmodulin-dependent protein kinase II (CaMKII), Neuronal nitric oxide synthase(nNOS). Glutamatergic energy is prominent, and calcium transport across the membrane is central to the network and occupies an important position. Kudzu root can significantly reduce neurological damage in rats with CI, and also significantly reduce the rate of cerebral infarction. It is worth noting that Kudzu root can prevent and treat CI by reducing excitatory amino acid toxicity and improving calcium overload.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call