Abstract
With the outbreak of infectious diseases such as Corona Virus Disease 2019, medical staff work intensively in isolated plots, medical disposable protective clothing (MDPC) has poor air condition and humidity permeability, which seriously reduces the thermal comfort of medical staff. In this paper, the effect of indoor thermal environment and activity levels on thermal comfort inside MDPC was studied by experiment. Five parts of the body were measured inside MDPC and the appropriate movements were chosen to simulate different levels of labor intensity. Meanwhile, physiological parameters and subjective thermal sensation were statistically analyzed. The results showed the influence range of different indoor temperatures on the temperature and humidity inside MDPC was about 1 °C and 10 %, respectively; it indicated that the environment inside MDPC could be improved by reducing indoor temperature, that is, a cross intelligent adjustment mode was proposed. The effect of labor intensity on the temperature inside MDPC was significantly less than that of humidity. Within 20 min, the humidity changes under moderate and heavy labor intensity were even more than 10 %, and the subjective discomfort threshold of the subjects increased by nearly 50 %. Furthermore, the maximum benefit could be obtained by concentrating cooling on back, forehead, chest and upper arm. Theoretical models of working time, labor intensity, and temperature and humidity inside MDPC under different indoor temperatures and different parts were given. In addition, acceptable regions inside MDPC which were approximately parallelogram in the enthalpy-humidity chart. These conclusions could be a reference for future thermal comfort inside MDPC research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.