Abstract

Although the ignition-and-growth model can simulate the ignition and detonation behavior of traditional energy materials well, it seems insufficient to simulate the impact-induced deflagration behavior of reactive materials (RMs) using current finite element codes due to their more complicated ignition threshold and lower reaction rates. Therefore, a simulation method for the impact-induced deflagration behavior of a reactive materials projectile (RMP) is developed by introducing tunable ignition threshold conditions for RMs, and a user-defined subroutine is formed by the secondary development on the equation of state (EOS). High-velocity impact experiments were performed to prove the validity of simulations. The results show that the user-defined subroutine for RMs is competent in simulating the ignition and deflagration behavior under impact conditions, because the reaction ratio, morphology and temperature distribution of RMP fragments are all well consistent with experiments, theory, and current reports from other researchers. In this way, the quantitative study on the deflagration reaction of RMs can be implemented and relevant mechanisms are revealed more clearly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.