Abstract
The Western Hubei section of the Liangyun fault is an important structural belt of the southern Qinling Mountains thrust nappe system. As the significant activity of the Liangyun fault since the Quaternary has led to high seismic risk in the surrounding area, the research on the characteristics and activity of fault structure is of great significance for deepening the construction of a seismic safety system in this area. In this study, we conducted a field geology survey combined with quartz optical stimulated luminescence dating, scanning electron microscopy dating, and thermoluminescence dating results and comprehensive application of shallow seismic reflection and high-resolution refraction) to analyze the activities of the Liangyun fault in the Quaternary period. Sediment optical stimulated luminescence dating results of samples from the breakpoint were 134.99 + 15.52 and 160.95 + 16.88 ka. Combined with the seismic profile, outcrop observation, and previous dating results, we conclude that the new era is in fault activities in the early Pleistocene to late Pleistocene (Q2–Q3). The combined application of shallow seismic reflection and high-resolution refraction method can confirm each other’s measured results, providing more parameters for the interpretation of seismic data under complex conditions and ensuring the accuracy of data interpretation at the same time. At present, the seismic experiment scheme is less used in the field of active fault detection, since its good detection effect and the application of the trial to shallow geophysical exploration has a certain application value and global scalability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have