Abstract
The research on the fouling prediction of heat exchanger is significantly to improve operational efficiency and economic benefits of the plants. Based on the relevance vector machine with Gaussian kernel function, polynomial kernel function and hybrid kernel function, simulation research on the fouling prediction was introduced. We construct a six-inputs and one-output network model according to the fouling monitor principle and parameters with MATLAB, all training data came from the Automatic Dynamic Simulator of Fouling and input the network after normalized processing and reclassification. Simulations show that the root mean square error of fouling prediction with hybrid kernel function is less than simple kernel function, and has the better prediction precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.