Abstract
The prediction accuracy of wind power affects the operation cost of the power grid, which is a direct result of the supply and demand balance of the grid. Therefore, how to improve the prediction accuracy of wind power is very important. Considering the prediction accuracy of current prediction methods is not high, a wind power prediction method based on a hybrid kernel function support vector machine is proposed. On the basis of the exhibited characteristics of different kernel functions, the hybrid kernel function is a linear combination of the radial basis function and the polynomial kernel function. The hybrid kernel function is selected as the kernel function of support vector machine. The global kernel function is used to fit the correlation of the distant sample data, while the partial kernel function is used to fit the correlation of the data in neighboring fields. The generalization performance of the support vector machine model is improved. At the same time, an improved particle swarm optimization algorithm is introduced to determine the optimal parameters of the hybrid kernel function and support vector machine prediction model. Finally, the built prediction model is used to predict the wind power. The simulation results demonstrate that the proposed prediction method has better prediction accuracy for wind power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.