Abstract

In order to study the relationship between an aerostatic three-component coefficient (ATCC) and bridge flutter and to quickly evaluate the flutter performance of bridges, we proposed a method based on the empirical formula of the ATCC. The correlation between the flutter driving term and the critical flutter wind speed V of nine bridges (six types of girder sections) was analyzed, and its rationality was verified using wind tunnel test results. The results showed that the flutter stability of the X-term damping-driven type, i.e., the slotted box girder, was the best; the flutter stability of the X + D-term damping-driven type, i.e., the H-shape bridge deck, was the worst; the flutter stability of D-term damping-driven type was measured as being between these two values. The gray correlation analysis method was used to analyze the correlation between the ATCC and the critical flutter wind speed. As well as the relationship between the ATCC and aerodynamic damping, an empirical parameter, K, based on the ATCC, was proposed for use in determining the D-term damping-driven flutter. The flutter stability of three types of girder sections was analyzed using parameter K, and the results of the analysis were consistent with the wind tunnel test results. The results show that the ATCC obtained from the segmental model force test can be used to preliminarily realize the rapid comparison and selection of flutter aerodynamic measures for bridges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call