Abstract
Fatigue damage that caused by low cycle fatigue may lead to many seriously industrial accidents and economic losses, which can be effectively evaluated by magnetic signal based on the magneto-mechanical model. However, the prevailing theoretical model have some limitations (e.g. inaccurate quantification, many unknown coefficients that difficult to obtain, etc.) in describing fatigue magnetization. A new nonlinear magneto-mechanical model based on J-A model proposed in this paper has superior prediction capability for the magnetization under elasto-plastic deformation. In addition, the evolution of the magnetic signal of ferromagnetic materials during the fatigue process is obtained by combining the viscoplastic model and magneto-mechanical model, the fitting equation of magnetic signal and fatigue damage in material fatigue process are proposed, and the determination coefficients are all greater than 0.99. The results of this paper can provide a basis for the electromagnetic nondestructive evaluation of fatigue damage of ferromagnetic materials in engineering.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have