Abstract

In order to explore the cracking law and failure characteristics of segments, a model test of shield segment cracking was conducted. The microscopic and macroscopic crack evolution process of the segment is studied by using acoustic emission detection technology and crack opening displacement (CMOD). According to the acoustic emission signal and CMOD, characteristics generated in the process of segment cracking, in the form of numerical value, the evolution characteristics of each stage of segment cracking are directly reflected. Based on acoustic emission energy and CMOD, the segment cracking damage model was established to determine the segment fracture damage degree. The result shows that segment cracking can be divided into three stages, and the acoustic emission detection results and CMOD have different degrees of change in each cracking stage. This proves that both the acoustic emission acquisition results and CMOD can be used as evaluation indicators of damage degree. Acoustic emission can accurately identify the crack evolution process, and the yield strengthening is an important stage of crack damage evolution. The damage data points in this stage account for 76.83% of all the damage data points, the occurrence rate of damage data points is 0.225 s, and the density of data points in the damaged area is 3.219 × 10−4 mm3, which is larger than the other two stages. The segment cracking damage model can effectively reflect the segment cracking degree and provide a reference for the actual segment cracking assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.