Abstract

In this paper, motor torque control methods are proposed to suppress the vibration of a dual-motor hybrid powertrain during start-stop operation. Firstly, a co-simulation ADAMS and MATLAB/SIMULINK model is built to study the dynamic characteristics of the hybrid vehicle during modes switching process. Secondly, a torque compensation control method of electric motors is established to compensate the vibration energy source. Thirdly, a vibration transfer path control is built to change the dynamic properties during the engine start-stop process. The results show that the proposed methods can reduce the longitudinal acceleration amplitude of the vehicle to less than 0.4 m/s2, which is only about 30% of the uncontrolled system, during the engine start process. While in the engine stop process, the longitudinal acceleration amplitude of the vehicle is reduced to less than 0.3 m/s2, and the vibration amplitude is only about 20% of the unchanged system. The established methods are effective for suppressing the vehicle vibration and controlling the energy during the modes switching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.