Abstract

In order to enhance traditional building materials, High-performance concrete (HPC) is being modified by adding carbon and basalt fibers with volume contents of 0.75-1.25% and 0.15-0.35%, respectively. The original mechanical properties are maintained while developing the material's intelligent self-sensing and self-heating functions, which are tested for pressure sensitivity and bending sensitivity, and with electrothermal tests. The results demonstrate that carbon fiber can significantly reduce the matrix resistivity of high-performance concrete, reaching the percolation threshold at a content of 1%. The inclusion of basalt fibers in the material results in a decrease in resistivity. However, the addition of mixed fibers leads to improved mechanical-electrical sensitivity under compression and bending, with a positive hybrid effect. The optimal contents for carbon fiber and basalt are 0.75% and 0.3%, respectively. In electrothermal tests, the specimen can reach a temperature of 104.5 °C with a heating rate of 25.86 °C/h, indicating the potential for self-monitoring and the electric melting of ice and snow. These findings provide support for the intelligent improvement of building structures in the new era.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call