Abstract

Triple negative breast cancer (TNBC) is a poor prognosis breast cancer with the highest mutation rate and limited treatment options. MiR-155 is highly expressed in TNBC, but its role and potential mechanism in TNBC remain to be elucidated. The aim of this study is to examine the effect of interfering with miRNA-155 on the inflammatory pathway of NLRP 3 in TNBC (MDA-MB-231). MiRNA-155-specific interference (Si-miR-155) on MDA-MB-231 cell was manifested by transfection of miRNA-155 inhibitor. Meanwhile, blank control (Blank) and negative control (NC) were set. Cell growth and proliferation rate were detected by MTT; apoptosis rate were detected by flow cytometry; colony forming test was used to detected cell viability; cell migration ability was detected by Wound healing assay; TNF-α, IL-18, IL-6 and IL-1β levels were detected by ELISA. The mRNA of miRNA-155, NLRP3, ASC, caspase-1 and Ki67 were detected by qRT-PCR. The expression levels of NLRP3, caspase-1, ASC and Ki67 were detected by Western blotting. The proliferation rate of Si-miRNA-155 group decreased, while the apoptosis rate increased significantly. After interfering with miRNA-155, the number of cancer cell colonies and the migration ability was decreased, and the secretion levels of IL-18, TNF-α, IL-6 and IL-1β were also inhibited. Moreover the mRNA and protein expression of NLRP3, caspase-1, ASC and Ki67 were significantly suppressed. Interference with miRNA-155 can inhibit the NLRP3 pathway of MDA-MB-231 cells, as well as the proliferation, migration and inflammatory factor secretion of MDA-MB-231 cell, and can accelerate its apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call