Abstract

Active tilting vehicles tilt to the inside of the corner when the vehicle is steering. The tilting motion improves the steering and roll stability of the vehicle. The steering mechanism and the tilting mechanism of the vehicle are connected in parallel. The transmission of the steering mechanism is influenced by the movements of the tilting mechanism. In order to solve this problem, a parallel mechanism is proposed in this paper. It consists of a spatial steering mechanism and a tilting mechanism in parallel. A mathematical model of the parallel mechanism with the wheel alignment parameters has been established. The model calculates the decoupling conditions of the parallel mechanism. In this study, a decoupling method for the parallel mechanism is proposed. A prototype of the parallel mechanism was designed according to the proposed method. The prototype was found to reduce the influence of vehicle tilting on the outer and inner wheel steering angles by up to 0.64% and 0.78%, respectively. The steering geometry correction rate of the prototype is between 1.198 and 0.961. The correctness of the model was verified by experimentation on the prototype. The proposed method can effectively decouple the tilting motion and steering motion of the vehicle and make the wheels on both sides satisfy the Ackerman steering condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.