Abstract

BackgroundActivating transcription factor 3 (ATF3) is an early response gene that is activated in response to atherosclerotic stimulation and may be an important factor in inhibiting the progression of atherosclerosis. In this study, we directly measured the expression of ATF3 and inflammatory factors in human coronary atherosclerotic plaques to examine the relationship between ATF3 expression, inflammation and structural stability in human coronary atherosclerotic plaques.MethodsA total of 68 coronary artery specimens were collected from the autopsy group, including 36 cases of sudden death from coronary heart disease (SCD group) and 32 cases of acute death caused by mechanical injury with coronary atherosclerosis (CHD group). Twenty-two patients who had no coronary heart disease were collected as the control group (Con group). The histological structure of the coronary artery was observed under a light microscope after routine HE staining, and the intimal and lesion thicknesses, thickness of the fibrous cap, thickness of necrosis core, degree of lumen stenosis were assessed by image analysis software. Western blotting and immunohistochemistry were used to measure the expression and distribution of ATF3, inflammatory factors (CD45, IL-1β, TNF-α) and matrix metalloproteinase-9 (MMP-9) and vascular cell adhesion molecule 1 (VCAM1) in the coronary artery. The Pearson correlation coefficient was used to analyse the correlation between ATF3 protein expression and inflammatory factors and between ATF3 protein expression and structure-related indexes in the lesion group.ResultsCompared with those in the control group, the intima and necrotic core in the coronary artery were thickened, the fibrous cap became thin and the degree of vascular stenosis was increased in the lesion group, while the intima and necrotic core became thicker and the fibrous cap became thinner in the SCD group than in the CHD group (P < 0.05). There was no or low expression of ATF3, inflammatory factors, VCAM1 and MMP-9 in the control group, and the expression of inflammatory factors, VCAM1 and MMP-9 in the SCD group was higher than that in CHD group, while the expression of ATF3 in the SCD group was significantly lower than that in CHD group (P < 0.05). In the lesion group, the expression of ATF3 was negatively correlated with intimal and necrotic focus thickness, positively correlated with fibrous cap thickness (P < 0.01), and negatively correlated with inflammatory factors, VCAM1 and MMP-9 (P < 0.01).ConclusionsThe expression of ATF3 may be related to the progression and stability of atherosclerotic plaques, and may affect the structural stability of atherosclerotic plaques by regulating the inflammatory response, thus participating in the regulation of atherosclerotic progression.

Highlights

  • Activating transcription factor 3 (ATF3) is an early response gene that is activated in response to atherosclerotic stimulation and may be an important factor in inhibiting the progression of atherosclerosis

  • Sixty-eight coronary artery tissue specimens were included in the lesion group: there were 36 cases of sudden death of coronary heart disease caused by arrhythmia or myocardial infarction, accompanied by plaque rupture and intra-plaque haemorrhage (SCD group) and 32 cases of death caused by traffic accident, electric shock, etc., and coronary artery associated with atherosclerosis (CHD group)

  • Our study shows that the expression levels of Leukocyte common antigen (CD45), IL-1β and Tumor necrosis factor α (TNF-α) are significantly increased in human coronary atherosclerotic lesions, which indicates that inflammation plays an important role in atherosclerosis

Read more

Summary

Introduction

Activating transcription factor 3 (ATF3) is an early response gene that is activated in response to atherosclerotic stimulation and may be an important factor in inhibiting the progression of atherosclerosis. We directly measured the expression of ATF3 and inflammatory factors in human coronary atherosclerotic plaques to examine the relationship between ATF3 expression, inflammation and structural stability in human coronary atherosclerotic plaques. Transcription factors directly affect gene expression and play key roles in regulating cell function and disease development [6]. Coronary arteries from autopsy cases were used to directly examine the degree of inflammation and the expression of ATF3 in human coronary artery lesions and to explore the relationship between the expression of ATF3, the level of inflammation in atherosclerotic plaques and the structural stability of atherosclerotic plaques. To provide a richer experimental basis for the diagnosis or treatment of coronary heart disease

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.