Abstract

The composite coatings of the tin bronze surface that was formed by alternately Electro-spark deposition (ESD) applying the soft anti-friction material of silver, copper, and babbit B83. The analysis of deposition on mass, roughness, cross-section morphology, surface morphology, thickness, elemental composition, and microhardness of the coatings were investigated by electronic scales, 3D optical profilometers, metallographic microscope, scanning electron microscopy (SEM), energy dispersion spectrum (EDS) and Vickers microhardness tester. The results show that the optimal process parameters of ESD are as follows: voltage is 60V/60V/30V, capacitance is 150μF/150μF/90μF and productive capacity is 3(min/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) /3(min/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) /4(min/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ), respectively. Under the optimal parameters, the unit coating mass of the substrate is 54.4 mg/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2,</sup> and the surface roughness of the coating is 32.3μm. The coatings are dense, metallurgical fusion with the substrate, and under the optimal parameters, the thickness of the coatings is about 100 μm. The elemental composition of the three characteristic regions (smooth surface, rough surface, and pore) on the surface of the composite coating varies significantly due to the different production modes. The hardness distribution from the coating surface to the substrate increases first, then decreases, and then increases gradually. The surface microhardness of the composite coatings is 29 HV <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.01</inf> , which is about 82% lower than that of the tin bronze substrate (161 HV <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.01</inf> ).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.