Abstract

This article aims to optimise the structure of a press machine to enhance its stability and accuracy, as well as reduce the frame deformation during processing. The outer supporting frame of the JH31-250 press machine (Zhejiang Weili Forging Machinery Co., Ltd, Shaoxing, China) is used as a typical sample for exploring optimisation. Commercial software is utilised to conduct a finite element analysis on the three-dimensional model of the press machine frame. A topological optimisation algorithm using the solid isotropic microstructures with penalisation (SIMP) method is then applied to improve the structure of the press frame. The size of the topological structure is further refined with the response surface method and particle swarm optimisation method to ensure it is more relevant to engineering application. The analysis results indicate that the initial frame’s deformation under the static conditions is 0.4229 mm, and after optimisation, the deformed structural displacement is 0.2548 mm, a decrease of 39.75%. Additionally, a simplified experimental method is designed to effectively validate the simulation and the proposed design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call