Abstract
Ionic liquids (ILs) have gained significant attention in recent years as potential corrosion inhibitors to various applications. Traditional corrosion inhibitors, such as organic compounds and inorganic salts, have limitations in terms of toxicity, volatility, and environmental impact. However, ionic liquids offer a promising alternative. Ionic liquids are salts that exist in a liquid state at or below 100 degrees Celsius. They typically comprise an organic cation and an inorganic or organic anion. The unique combination of a liquid state and ionic nature gives them several advantageous properties, such as high thermal stability, low vapor pressure, and tunable physicochemical properties. Additionally, the charged nature of the ionic liquid allows for electrochemical interactions with the metal surface, further enhancing corrosion inhibition. In this paper, imidazole-based ionic liquids were synthesized by alkylation of imidazole derivatives using 1-bromohexadecane. The anti-corrosion properties of the material were evaluated using the weight method and potentiodynamic polarization method. Results showed that the synthesized ILs are good corrosion inhibitor for CT3 steel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.