Abstract
To enhance the control performance of a wire-controlled steering system, an improved sparrow search algorithm for fine-tuning the gains of a proportional–integral–derivative (SSA-PID) steering motor control algorithm is proposed. Mathematical models of the steering system and motor were derived based on an analysis of the system’s structure and dynamics. A PID controller was developed with the aim of facilitating the precise control of the steering angle by targeting the angle of the steering motor. The population diversity in the sparrow algorithm was enhanced through the integration of a human learning mechanism along with a Cauchy–Gaussian variation strategy. Furthermore, an adaptive warning strategy was implemented, which employed spiral exploration to modify the ratio of early warning indicators, thereby augmenting the algorithm’s capacity to evade local optima. Following these enhancements, an SSA-PID steering motor control algorithm was developed. Joint simulations were performed using the CarSim software 2019.1 and MATLAB/Simulink R2022a, and subsequent tests were conducted on a wire-controlled steering test rig. The outcomes of the simulations and bench tests demonstrate that the proposed SSA-PID regulation algorithm is capable of adapting effectively to variations and disturbances within the system, facilitating precise motor angle control and enhancing the overall reliability of the steering system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.