Abstract

This research aims to apply Artificial Intelligence (AI) methods, specifically Artificial Immune Systems (AIS), to design an optimal control strategy for a multivariable control plant. Two specific industrial control approaches are investigated: I-PD (Integral-Proportional Derivative) and PI-D (Proportional-Integral Derivative) control. The motivation for using these variations of PID controllers is that they are functionally implemented in modern industrial controllers, where they provide precise process control. The research results in a novel solution to the control synthesis problem for the industrial system. In particular, the research deals with the synthesis of I-P control for a two-loop system in the technological process of a distillation column. This synthesis is carried out using the AIS algorithm, which is the first application of this technique in this specific context. Methodological approaches are proposed to improve the performance of industrial multivariable control systems by effectively using optimization algorithms and establishing modified quality criteria. The numerical performance index ISE justifies the effectiveness of the AIS-based controllers in comparison with conventional PID controllers (ISE1 = 1.865, ISE2 = 1.56). The problem of synthesis of the multi-input multi-output (MIMO) control system is solved, considering the interconnections due to the decoupling procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.