Abstract
This study focuses on the spatial magnetic field distribution of magnetic fluids, an extraordinary class of fluids composed of magnetic nanoparticles (MNPs), employing the Monte Carlo method to simulate the microstructure of magnetic fluids under an external magnetic field. On that basis, a model was established through magnetic dipole theory to delve into the spatial magnetic field distribution of magnetic fluids. The findings reveal that the application of a magnetic field leads to the formation of chain-like structures within the magnetic fluids, resulting in inhomogeneous spatial magnetic field distribution. The size and concentration of MNPs are crucial determinants that significantly affect the microstructure of magnetic fluid and its spatial magnetic field distribution. Furthermore, environmental conditions such as external magnetic field strength or temperature can also regulate the positions of MNPs within magnetic fluids and the spatial magnetic field distribution of the magnetic fluids. These observations enrich the comprehension of the fundamental mechanisms of magnetic fluids and their response to diverse factors, advancing the growing comprehension on the characteristics and applications of these remarkable magnetic fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.