Abstract
This article introduces the composition and 12 operating conditions of a four-engine two-propeller hybrid power system. Through the combination of gearbox clutch and disconnection, the propulsion system has four single-engine operation modes, two double-engine parallel operation modes, and six PTI operation modes. Because the propulsion system has a variety of operating conditions, each operating condition has a form of energy transfer. As a result, its energy management and control are more complicated. To study the energy management and control strategy of a diesel- electric hybrid propulsion system, this work mainly studies the simulation model and sub-models of a diesel-electric hybrid propulsion system. In this study, MATLAB/ SIMULINK software is used to build the diesel engine model, motor model, and ship engine system mathematical model. The test and analysis were carried out on the test bench of the diesel-electric hybrid power system. By comparing the theoretical value of the SIMULINK simulation model with the test value of the test bench system, the correctness of each sub-model modeling method is verified. On the one hand, research on the text lays a theoretical foundation for the subsequent implementation of the conventional energy management and control strategy based on state identification on the unified management and distribution of the diesel-electric hybrid power system. At the same time, energy management of the diesel-electric hybrid system is also carried out. Optimization research provides theoretical guidance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have