Abstract
EMS (Energy management system) is a collection of computer hardware and software, which collects, monitors, controls and optimizes data provided by power control system, and provide trading scheme, security services and service analysis for power market. The prediction of status data is a basic function module of advanced application software systems. Therefore it is meaningful to do research on new method and new technology of predicting power grid status data. In this paper, support vector machine is used to do regression prediction for active power of EMS. In training process, the training set and kernel function of SVM are selected, and parameters are optimized, also, the performance of SVM is evaluated. Experiments show that SVM can get higher accuracy in short term active power prediction although the data set is small. This paper provides a new idea for related research works in electric power industry system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.