Abstract

A short-term power load forecasting (STPLF) model based on the Improved Whale Optimization Algorithm (IWOA) optimized Kernel Extreme Learning Machine (KELM) is proposed to address the problems of high randomness and low forecasting accuracy of electricity loads. The KELM model is constructed, and the IWOA is used to optimize the core and penalty parameters of the KELM to establish the IWOA-KELM electricity load forecasting model. Combined with the actual data of a certain region, the forecasting analysis results show that the convergence speed and forecasting accuracy of the method are greatly improved compared with IWOA-BP, IWOA-SVM and IWOA-ELM forecasting methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.