Abstract

The EHA is a highly integrated closed hydraulic system which is widely used in aerospace, vehicles, and robotics because of its high power and lightweight size. Due to the high non-linearity of the control system, it is difficult to reach a high robustness, leading to instability of the EHA system. In this paper, the fuzzy PID control strategy is proposed for overall control of the whole EHA system. Firstly, the structure and operating principle of EHA are analyzed. Secondly, the mathematical model and simulation model of the EHA-FPVM were established. Specially, to solve the problem of difficult calculation of non-linear factors such as friction and external forces, a co-simulation model was built in Matlab/Simulink AMESim, and a fuzzy PID controller was designed to control the EHA-FPVM. Finally, the PID and fuzzy PID controller were used to conduct simulation experiments, the simulation results are compared, and a servo-hydraulic system evaluation method is introduced to assess the simulation results. The results show that the EHA fuzzy PID control system has better output performance, lower overshoot percentages and steady-state errors, and the obtained evaluation scores are higher and more suitable for controlling EHA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.