Abstract
Power equipment is an important component of the whole power system, so that it is obvious that it is required to develop a correct method for accurate analysis of the infrared image features of the equipment in the field of detection and recognition. This study proposes a troubleshooting strategy for the power equipment based on the improved AlexNet neural network. Multi-scale images based on the Pan model are used to determine the equipment features, and to determine the shortcomings of AlexNet neural network, such as slower recognition speed and easy overfitting. After knowing these shortcomings, it would become possible to improve the specific recognition model performance by adding a pooling layer, modifying the activation function, replacing the LRN with BN layer, and optimizing the parameters of the improved WOA algorithm, and other measures. In the simulation experiments, this paper's algorithm was compared with AlexNet, YOLO v3, and Faster R-CNN algorithms in the lightning arrester fault detection, circuit breaker fault detection, mutual transformer fault detection, and insulator fault detection improved by an average of 5.47 %, 4.69 %, and 3.42 %, which showed that the algorithm had a better recognition effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.