Abstract
To meet the transmission requirements of different users in a multiple-beam access system for underwater optical communication (UWOC), this paper proposes a novel multiple-beam space division multiple access (MB-SDMA) system by utilizing a directional radiation communication beam of the hemispherical LED arrays. The system's access users in the different beams are divided into two categories: the users with a single beam and the users with multiple beams. We also propose a power allocation algorithm that guarantees the quality of service (QoS) for single beam and multiple beam access, especially the QoS for edge users, and fairness for all users. An optimization model of power distribution under the constraints of specific light-emitting diode (LED) emission power is established for two scenarios, which ensure the user QoS for edge users and the max-min fairness for fair users. Using the Karush-Kuhn-Tucker (KKT) condition and the bisection method, we obtain the optimal power allocation expression for the two types of users in the optimization model. Through simulation, we verify that the proposed user classification and power allocation method can ensure the fairness of fair users on the premise of ensuring the QoS of edge users. At the same time, we know that the number of users will affect the improvement of the minimum rate, and the throughput of the non-orthogonal multiple access (NOMA) system is greatly improved compared with the traditional orthogonal multiple access (OMA) systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.