Abstract

Power allocation is a critical issue in the physical layer of power-domain nonorthogonal multiple access (NOMA) systems. However, existing power allocation schemes have not considered the delay quality of service (QoS) requirement in the datalink layer of users, and hence may not ensure the desired delay QoS requested by the services in the upper layers. Different from existing works, we apply the statistical QoS theory into NOMA systems and formulate the physical-datalink cross-layer power allocation problem as a stochastic optimization problem under different delay QoS constraints. Also, we show that the formulated problem is quasi-concave and propose a bisection-based cross-layer power allocation algorithm. Simulation results show that the proposed algorithm is able to converge to the optimal solution obtained by exhaustive search. Also, the proposed scheme outperforms existing fixed NOMA and time-division multiple access based schemes in terms of max–min effective capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call