Abstract

Silk products are used in medicine as biomaterials, and are particularly promising as scaffolds in tissue engineering. To date only silkworm and spider silk medical potential has been evaluated, whereas the possible application of the material spun by caddisflies in wet environment has not been examined. Biomedical application of every natural material requires biocompatibility testing and evaluation of unique microbiological and mechanical properties. This article focuses on silk fibers formed in caddisflies cocoons of Hydropsyche angustipennis (Insecta, Trichoptera) larvae. Preliminary biological evaluation shows that trichopteran silk is not cytotoxic to human cells. Caddisfly silk itself does not possess antiseptic properties and thus sterilization is indispensable for its application in medicine. Among tested methods of sterilization and disinfection only thermal methods (tyndallization and autoclaving) enabled complete eradication of bacteria and gave fully sterile material. Caddisfly silk appeared to be resistant to high temperature. Fully sterile fibers can be stored without a loss of breaking force and tensile strength. Our work shows that trichopteran silk has a significant potential to be used as a biomaterial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.