Abstract

Photovoltaic (PV) power generation technology is the main renewable energy utilization technology. However, dust deposition severely affects the PV power generation efficiency and decreases the production capacity of PV power plants. In this study, the factors affecting PV technology were divided into the following three types: occlusion, corrosion, and temperature rise. A dust-collecting PV model considering dust deposition and rainfall scouring was established; a PV performance index was proposed. By conducting experiments with different dust mass densities, it was found that the short-circuit current (SCC), open-circuit voltage (OCV), and PV output power of PV decreased with the increase in dust mass density. In the initial stage of dust deposition, dust exhibited the greatest effect on the performance of PV. In the later stage of dust deposition, the effect of dust deposition became stable. The initial 10 g/m2 dust decreased the PV output power by 34%. In addition, the conversion efficiency and fill factor (FF) decreased with the increase in dust mass density; both of them were exponential functions. When the dust mass density was low (less than 30 g/m2), the dust mass density increased by 10 g/m2, and the conversion efficiency decreased by an average of 3.4%. Finally, by conducting economic calculations, it was found that a PV power plant where dust has not removed for one year will cause 12% loss of power generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call