Abstract
Aiming at the actual problems encountered in the specific poverty alleviation work, this article designs a management system specifically designed for poverty alleviation workers to solve poverty alleviation data sharing and online editing and uploading of poverty alleviation logs. Based on the neural network and network characteristics, a system model is constructed, and the application of structural disturbance theory in dynamic networks is studied. Moreover, in this study, the dynamic change information between time-series networks is taken into account for structural disturbances. By combining structural disturbances and local topology, a new similarity measurement method suitable for dynamic networks is proposed. In addition, this study proposes an algorithm based on evolutionary clustering and density clustering to detect the structure of dynamic communities. Finally, this study compares the proposed method with the classic method in the artificial network and the real network and analyzes the performance of the research model through data analysis. The research results show that the model constructed in this paper has good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.