Abstract
Discovering evolving communities in dynamic networks is essential to important applications such as analysis for dynamic web content and disease progression. Evolutionary clustering uses the temporal smoothness framework that simultaneously maximizes the clustering accuracy at the current time step and minimizes the clustering drift between two successive time steps. In this paper, we propose two evolutionary nonnegative matrix factorization (ENMF) frameworks for detecting dynamic communities. To address the theoretical relationship among evolutionary clustering algorithms, we first prove the equivalence relationship between ENMF and optimization of evolutionary modularity density. Then, we extend the theory by proving the equivalence between evolutionary spectral clustering and ENMF, which serves as the theoretical foundation for hybrid algorithms. Based on the equivalence, we propose a semi-supervised ENMF (sE-NMF) by incorporating a priori information into ENMF. Unlike the traditional semi-supervised algorithms, a priori information is integrated into the objective function of the algorithm. The main advantage of the proposed algorithm is to escape the local optimal solution without increasing time complexity. The experimental results over a number of artificial and real world dynamic networks illustrate that the proposed method is not only more accurate but also more robust than the state-of-the-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.