Abstract
To predict correctly the rut depths in asphalt pavements, a new nonlinear viscoelastic-elastoplastic constitutive model of permanent deformation in asphalt pave-ments is presented. The model combines a generalized Maxwell model with an elasto-plastic one. Then from the creep theory, the linear and nonlinear constitutive equations of the generalized Maxwell model are obtained. From the nonlinear finite element method for the rutting of the asphalt pavement, the rut depths of 4 asphalt-aggregate mixtures are obtained. And the results are compared with the ones from the finite element method by SHRP and the experiments by SWK/UN. The results in this paper are better than the ones by SHRP, and agree with the ones of the experiment by SWK/UN. This shows that the nonlinear viscoelastic-elastoplastic constitutive model, which is presented in this paper for the rutting of the asphalt pavement, is effective. The properties, such as nonlinear elastic-ity, plasticity, viscoelasticity and nonlinear viscoelasticity, which affect the rutting of an asphalt pavement, can be shown in the model. And the characteristics of the permanent deformation of the asphalt pavement can be presented entirely in the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Science in China Series G: Physics, Mechanics and Astronomy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.